Abstract
Kernel filling is an important factor that directly affects kernel yield in maize. Based on a Logistic model, the process of kernel filling in maize can be effectively fitted, and the characteristic parameters with biological significance can be estimated. To clarify the genetic mechanism of characteristic parameters of kernel filling in maize, a recombinant inbred line (RIL) population including 208 lines derived from the maize inbred lines DH1M and T877 were evaluated in Nantong in 2015 and in Yangzhou in 2016, respectively. The kernel dry weights of recombinant inbred lines were measured 10, 15, 20, 25, 30, 35, 40, 43, 46, 49, 52, 55, 58 and 61 days after pollination (DAP). A total of 12 characteristic parameters related to kernel filling were estimated in different environments using the Logistic model. These parameters showed abundant phenotypic variation across two environments in the recombinant inbred line population. Some more ideal genotypes were selected through clustering based on BLUP values of characteristic parameters. Genetic analysis indicated that the 12 characteristic parameters conformed to the “major gene plus polygenes” model. The results of two environments were reproduced well. Most of the characteristic parameters related to kernel filling were controlled by two major genes, and a few characteristic parameters were controlled by three or four major genes. In addition, the genetic models of some characteristic parameters differed in the two environments due to interactions between the genes and environments. This study not only laid a foundation for further clarifying the genetic mechanism of maize kernel filling and mapping the related genes but also suggests a new paradigm for dynamic developing traits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.