Abstract

We employ a mathematical framework based on the Riemann-Hilbert approach developed by Bettelheim et al (2022 J. Phys. A: Math. Gen. 55 135001) to study logarithmic negativity of two intervals of free fermions in the case where the size of the intervals as well as the distance between them is macroscopic. We find that none of the eigenvalues of the density matrix become negative, but rather they develop a small imaginary value, leading to non-zero logarithmic negativity. As an example, we compute negativity at half-filling and for intervals of equal size we find a result of order , where N is the typical length scale in units of the lattice spacing. One may compute logarithmic negativity in further situations, but we find that the results are non-universal, depending non-smoothly on the Fermi level and the size of the intervals in units of the lattice spacing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.