Abstract
The n-vector spin model, which includes the self-avoiding walk (SAW) as a special case for the n→0 limit, has an upper critical dimensionality at four spatial dimensions (4D). We simulate the SAW on 4D hypercubic lattices with periodic boundary conditions by an irreversible Berretti-Sokal algorithm up to linear size L=768. From an unwrapped end-to-end distance, we obtain the critical fugacity as z_{c}=0.147622380(2), improving over the existing result z_{c}=0.1476223(1) by 50 times. Such a precisely estimated critical point enables us to perform a systematic study of the finite-size scaling of 4D SAW for various quantities. Our data indicate that near z_{c}, the scaling behavior of the free energy simultaneously contains a scaling term from the Gaussian fixed point and the other accounting for multiplicative logarithmic corrections. In particular, it is clearly observed that the critical magnetic susceptibility and the specific heat logarithmically diverge as χ∼L^{2}(lnL)^{2y[over ̂]_{h}} and C∼(lnL)^{2y[over ̂]_{t}}, and the logarithmic exponents are determined as y[over ̂]_{h}=0.251(2) and y[over ̂]_{t}=0.25(3), in excellent agreement with the field theoretical prediction y[over ̂]_{h}=y[over ̂]_{t}=1/4. Our results provide a strong support for the recently conjectured finite-size scaling form for the O(n) universality classes at 4D.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.