Abstract
We give a geometric invariant theory (GIT) construction of the log canonical model M ¯ g (a) of the pairs (M ¯ g ,ad) for a?(7/10�?,7/10] for small ??Q + . We show that M ¯ g (7/10) is isomorphic to the GIT quotient of the Chow variety of bicanonical curves; M ¯ g (7/10-?) is isomorphic to the GIT quotient of the asymptotically-linearized Hilbert scheme of bicanonical curves. In each case, we completely classify the (semi)stable curves and their orbit closures. Chow semistable curves have ordinary cusps and tacnodes as singularities but do not admit elliptic tails. Hilbert semistable curves satisfy further conditions; e.g., they do not contain elliptic chains. We show that there is a small contraction ?:M ¯ g (7/10+?)?M ¯ g (7/10) that contracts the locus of elliptic bridges. Moreover, by using the GIT interpretation of the log canonical models, we construct a small contraction ? + :M ¯ g (7/10-?)?M ¯ g (7/10) that is the Mori flip of ? .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.