Abstract
For nonlinear systems with continuous dynamic and discrete measurements, a Log-Euclidean metric (LEM) based novel scheme is proposed to refine the covariance integration steps of continuous–discrete Extended Kalman filter (CDEKF). In CDEKF, the covariance differential equation is usually integrated with regular Euclidean matrix operations, which actually ignores the Riemannian structure of underlying space and poses a limit on the further improvement of estimation accuracy. To overcome this drawback, this work proposes to define the covariance variable on the manifold of symmetric positive definite (SPD) matrices and propagate it using the Log-Euclidean metric. To embed the LEM based novel propagation scheme, the manifold integration of the covariance for LEMCDEKF is proposed together with the details of efficient realization, which can integrate the covariance on SPD manifold and avoid the drawback of Euclidean scheme. Numerical simulations certify the new method’s superior accuracy than conventional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.