Abstract

Logs play an important role in the maintenance of large-scale systems. The number of logs which indicate normal (normal logs) differs greatly from the number of logs that indicate anomalies (abnormal logs), and the two types of logs have certain differences. To automatically obtain faults by K-Nearest Neighbor (KNN) algorithm, an outlier detection method with high accuracy, is an effective way to detect anomalies from logs. However, logs have the characteristics of large scale and very uneven samples, which will affect the results of KNN algorithm on log-based anomaly detection. Thus, we propose an improved KNN algorithm-based method which uses the existing mean-shift clustering algorithm to efficiently select the training set from massive logs. Then we assign different weights to samples with different distances, which reduces the negative effect of unbalanced distribution of the log samples on the accuracy of KNN algorithm. By comparing experiments on log sets from five supercomputers, the results show that the method we proposed can be effectively applied to log-based anomaly detection, and the accuracy, recall rate and F measure with our method are higher than those of traditional keyword search method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.