Abstract

Glutamatergic neurotransmission plays an important role in the behavioral and molecular plasticity observed in cocaine mediated locomotor sensitization. Recent studies show that glutamatergic signaling is regulated by receptor trafficking, synaptic localization, and association with scaffolding proteins. The trafficking of the glutamate receptors was investigated in the dorsal and ventral prefrontal cortex at 1 and 21 days after repeated cocaine administration which produced robust locomotor sensitization. A subcellular fractionation technique was used to isolate the cellular synaptosomal fraction containing the postsynaptic density. At early withdrawal, the prefrontal cortex displayed a reduction in the synaptosomal content of the AMPA and NMDA receptor subunits. In contrast, after extended withdrawal, there was a significant increase in the trafficking of the receptors into the synaptosomal compartment. These changes were accompanied by corresponding trafficking of the postsynaptic glutamatergic scaffolding proteins. Thus, enhanced trafficking of glutamate receptors from cytosolic to synaptosomal compartment is associated with prolonged withdrawal from repeated exposure to cocaine and may have functional consequences for the synaptic and behavioral plasticity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.