Abstract

ObjectivesDuring musculoskeletal development, the vitamin D endocrine system is crucial, because vitamin D–dependent calcium absorption is a major regulator of bone growth. Because exercise regimens depend on bone mass, the direct action of active vitamin D (1,25-dihydroxyvitamin D3 [1,25(OH)2D3]) on musculoskeletal performance should be determined. MethodsTo evaluate the effect of 1,25(OH)2D3 on muscle tissue, the vitamin D receptor (Vdr) gene was genetically inactivated in mouse skeletal muscle and the role of 1,25(OH)2D3-VDR signaling on locomotor function was assessed. The direct action of 1,25(OH)2D3 on muscle development was determined using cultured C2C12 cells with myogenic differentiation. ResultsThe lack of Vdr activity in skeletal muscle decreased spontaneous locomotor activity, suggesting that the skeletal muscle performance depended on 1,25(OH)2D3-VDR signaling. Bone phenotypes, reduced femoral bone mineral density, and accelerated osteoclast bone resorption were confirmed in mice lacking skeletal muscle Vdr activity. In vitro study revealed that the treatment with 1,25(OH)2D3 decreased the cellular adenosine triphosphate (ATP)–to–adenosine monophosphate ratio without reducing ATP production. Remarkably, protein expressions of connexin 43, an ATP releaser to extracellular space, and ATP metabolizing enzyme ectonucleotide pyrophosphatase phosphodiesterase 1 were increased responding to 1,25(OH)2D3 treatment. Furthermore, the concentration of pyrophosphate in the culture medium, which inhibits tissue calcification, was increased with 1,25(OH)2D3 treatment. In the presence of 1,25(OH)2D3-VDR signaling, calcium accumulation was suppressed in both muscle samples isolated from mice and in cultured C2C12 cells. ConclusionsThis study dissected the physiological functions of 1,25(OH)2D3-VDR signaling in muscle and revealed that regulation of ATP dynamics is involved in sustaining locomotor function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.