Abstract
Recent studies indicate that administration of dopamine D2-like receptor agonists reinstates drug-seeking behavior in rodents, whereas dopamine D1-like receptor agonists do not. These effects have been related to the ability of these agonists to facilitate the expression of sensitized locomotor activity. Presently, we describe experiments in which locomotor activity was assessed concomitantly with operant performance during acquisition, extinction and reinstatement. We report that locomotor activity was inversely related to drug-seeking behavior during acquisition of cocaine self-administration under a Fixed Ratio (FR) 1 schedule of reinforcement. During a single trial extinction session, animals that had acquired cocaine self-administration exhibited a conditioned increase in drug-seeking behavior, but there was no evidence of a conditioned locomotor response. During reinstatement, cocaine (20 mg/kg) significantly increased both locomotor activity and drug-seeking behavior. The dopamine D2-like receptor agonist quinpirole (0.5 mg/kg) increased drug-seeking behavior, but did not significantly increase locomotor activity. In contrast, the dopamine D1-like receptor agonist SKF 81297 (0.5 mg/kg) failed to reinstate drug-seeking behavior, but produced significant locomotor activation. To determine whether the inability of SKF 81297 to promote reinstatement is related to the strength of operant conditioning, additional rats were trained to self-administer cocaine using an FR-3 schedule of reinforcement. Despite achieving response rates during training almost four times higher compared to the FR-1 condition, administration of SKF 81297 again failed to significantly increase drug-seeking behavior during reinstatement testing. These results extend previous findings, confirming the important role of D2-like, but not D1-like receptor activation in the reinstatement of drug-seeking behavior. An understanding of the mechanisms by which D1- and D2-like agonists differentially influence locomotor activation and drug-seeking behavior in cocaine-experienced rodents may prove critical to the development of increasingly effective pharmacotherapies for substance abuse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.