Abstract

ABSTRACT This paper presents mechatronic design and hierarchical locomotion control of a biomimetic robotic fish for three-dimensional swimming modes. Inspired by biological features of Lamprey, a closed loop sensory feedback Central Pattern Generator (CPG) model is adapted to hierarchical control mechanism in order to provide robust and effective biomimetic control structure. A sensory feedback mechanism plays an important role to react external stimuli from environment. In addition, a closed loop fuzzy logic control structure is developed as a brain model to decide adaptive swimming modes according to sensory information. In order to provide three-dimensional motion abilities, the Centre of Gravity (CoG) control mechanism is designed and controlled by a back-forth proportional control structure. Experimental results are obtained to prove the CPG-based closed loop sensory feedback control structure with the developed robotic fish prototype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.