Abstract

In mobile crowdsensing, location-based task recommendation requires each data requester to submit a task-related geometric range to crowdsensing service providers such that they can match suitable workers within this range. Generally, a trusted server (i.e., database owner) should be deployed to protect location privacy during the process, which is not desirable in practice. In this paper, we propose the location privacy-preserving task recommendation (PPTR) schemes with geometric range query in mobile crowdsensing without the trusted database owner. Specifically, we first propose a PPTR scheme with linear search complexity, named PPTR-L, based on a two-server model. By leveraging techniques of polynomial fitting and randomizable matrix multiplication, PPTR-L enables the service provider to find the workers located in the data requester’s arbitrary geometric query range without disclosing the sensitive location privacy. To further improve query efficiency, we design a novel data structure for task recommendation and propose PPTR-F to achieve faster-than-linear search complexity. Through security analysis, it is shown that our schemes can protect the confidentiality of workers’ locations and data requesters’ queries. Extensive experiments are performed to demonstrate that our schemes can achieve high computational efficiency in terms of geometric range query.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.