Abstract

Resonance x-ray diffraction measurements on the lamellar diffraction from oriented multilayers of isolated sarcoplasmic reticulum (SR) membranes containing a small concentration of lanthanide (III) ions (lanthanide/protein molar ratio approximately 4) have allowed us to calculate both the electron density profile of the SR membrane and the separate electron density profile of the resonant lanthanide atoms bound to the membrane to a relatively low spatial resolution of approximately 40 A. Analysis of the membrane electron density profile and modeling of the separate low resolution lanthanide atom profile, using step-function electron density models based on the assumption that metal binding sites in the membrane profile are discrete and localized, resulted in the identification of a minimum of three such binding sites in the membrane profile. Two of these sites are low-affinity, low-occupancy sites identified with the two phospholipid polar headgroup regions of the lipid bilayer within the membrane profile. Up to 20% of the total lanthanide (III) ions bind to these low-affinity sites. The third site has relatively high affinity for lanthanide ion binding; its Ka is roughly an order of magnitude larger than that for the lower affinity polar headgroup sites. Approximately 80% of the total lanthanide ions present in the sample are bound to this high-affinity site, which is located in the "stalk" portion of the "headpiece" within the profile structure of the Ca+2 ATPase protein, approximately 12 A outside of the phospholipid polar headgroups on the extravesicular side of the membrane profile. Based on the nature of our results and on previous reports in the literature concerning the ability of lanthanide (III) ions to function as Ca+2 analogues for the Ca+2 ATPase we suggest that we have located a high-affinity metal binding site in the membrane profile which is involved in the active transport of Ca+2 ions across the SR membrane by the Ca+2 ATPase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.