Abstract

Since 2021, cobalt (Co) is in Europe classified as carcinogen in quantities exceeding 0.1 wt-%. This affects nickel-rich stainless steels, which contain about 0.2 wt-% Co impurities. Previous findings show the bioaccessibility of Co in stainless steel to be primarily determined by the corrosion resistance. It has been unclear whether Co is distributed heterogeneously in the alloy and the outermost surface and whether a specific location would pose a risk for Co release under specific exposure conditions. This study aimed at locating Co in stainless steel 316L (0.2 wt-% Co) surfaces prior to and after exposure to different synthetic body fluids for 24 h at 37 °C. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma mass spectrometry (ICPMS) investigated the location of Co in the surface oxide and extent of release along with other metals (iron, chromium, nickel, and manganese) into synthetic biological fluids (gastric fluid, pH 1.5; lysosomal fluid, pH 4.5; phosphate buffered saline-PBS, pH 7.4). Co was homogeneously distributed along with metallic nickel beneath the surface oxide and co-released with other metals upon surface reformation and passivation. Exposure in PBS resulted in the incorporation of both Co and phosphate in the oxide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call