Abstract
Two series of pyrene-labeled poly(oligo(ethylene glycol) methyl ether methacrylate)s referred to as PyEG5-PEGnMA and PyC4-PEGnMA were prepared to probe the region surrounding the polymethacrylate backbone by using the fluorescence of the dye pyrene. PyEG5-PEGnMA and PyC4-PEGnMA were prepared by copolymerizing the EGnMA methacrylate monomers with penta(ethylene glycol) 1-pyrenemethyl ether methacrylate or 1-pyrenebutyl methacrylate, respectively. In organic solvents, the much longer 18 non-hydrogen atom linker connecting the pyrene moieties to the polymethacrylate backbone in the PyEG5-PEGnMA samples enabled the deployment of the pyrenyl labels into the solution. In water, however, an excited pyrene for PyEG5-PEGnMA was found to probe a same volume as for the PyC4-PEGnMA samples where a much shorter 6 non-hydrogen atom spacer connected pyrene to the backbone. Another surprising observation, considering that the hydrophobicity of pyrene induces strong pyrene aggregation for many pyrene-labeled water-soluble polymers (Py-WSPs) in water, was the little pyrene aggregation found for the PyEG5-PEGnMA and PyC4-PEGnMA samples in water. These effects could be related to the organic-like domain (OLD) generated by the oligo(ethylene glycol) side chains densely arranged around the polymethacrylate backbone of the polymeric bottlebrush (PBB). Additional fluorescence experiments conducted with the penta(ethylene glycol) 1-pyrenemethyl ether derivative indicated that the cylindrical OLD surrounding the polymethacrylate backbone had a chemical composition similar to that of ethylene glycol. Binding of hydrophobic pyrene molecules to unlabeled PEGnMA bottlebrushes in water further supported the existence of the OLD. The demonstration, that PEGnMA samples form an OLD in water, which can host and protect hydrophobic cargoes like pyrene, should lead to the development of improved PEGnMA-based drug delivery systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.