Abstract
Locating the start, apex and end keyframes of moving contrast agents for keyframe counting in X-ray coronary angiography (XCA) is very important for the diagnosis and treatment of cardiovascular diseases. To locate these keyframes from the class-imbalanced and boundary-agnostic foreground vessel actions that overlap complex backgrounds, we propose long short-term spatiotemporal attention by integrating a convolutional long short-term memory (CLSTM) network into a multiscale Transformer to learn the segment- and sequence-level dependencies in the consecutive-frame-based deep features. Image-to-patch contrastive learning is further embedded between the CLSTM-based long-term spatiotemporal attention and Transformer-based short-term attention modules. The imagewise contrastive module reuses the long-term attention to contrast image-level foreground/background of XCA sequence, while patchwise contrastive projection selects the random patches of backgrounds as convolution kernels to project foreground/background frames into different latent spaces. A new XCA video dataset is collected to evaluate the proposed method. The experimental results show that the proposed method achieves a mAP (mean average precision) of 72.45% and a F-score of 0.8296, considerably outperforming the state-of-the-art methods. The source code is available at https://github.com/Binjie-Qin/STA-IPCon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.