Abstract
Learning-based video compression has achieved substantial progress during recent years. The most influential approaches adopt deep neural networks (DNNs) to remove spatial and temporal redundancies by finding the appropriate lower-dimensional representations of frames in the video. We propose a novel DNN based framework that predicts and compresses video sequences in the latent vector space. The proposed method first learns the efficient lower-dimensional latent space representation of each video frame and then performs inter-frame prediction in that latent domain. The proposed latent domain compression of individual frames is obtained by a deep autoencoder trained with a generative adversarial network (GAN). To exploit the temporal correlation within the video frame sequence, we employ a convolutional long short-term memory (ConvLSTM) network to predict the latent vector representation of the future frame. We demonstrate our method with two applications; video compression and abnormal event detection that share the identical latent frame prediction network. The proposed method exhibits superior or competitive performance compared to the state-of-the-art algorithms specifically designed for either video compression or anomaly detection. <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.