Abstract
Structural nonlinearity is a common phenomenon encountered in engineering structures under severe dynamic loading. It is necessary to localize and identify structural nonlinearities using structural dynamic measurements for damage detection and performance evaluation of structures. However, identification of nonlinear structural systems is a difficult task, especially when proper mathematical models for structural nonlinear behaviors are not available. In prior studies on nonparametric identification of nonlinear structures, the locations of structural nonlinearities are usually assumed known and all structural responses are measured. In this paper, an identification algorithm is proposed for locating and identifying model-free structural nonlinearities and systems using incomplete measurements of structural responses. First, equivalent linear structural systems are established and identified by the extended Kalman filter (EKF). The locations of structural nonlinearities are identified. Then, the model-free structural nonlinear restoring forces are approximated by power series polynomial models. The unscented Kalman filter (UKF) is utilized to identify structural nonlinear restoring forces and structural systems. Both numerical simulation examples and experimental test of a multi-story shear building with a MR damper are used to validate the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.