Abstract

Field-effect transistor (FET) devices with multi-gate coupled structures usually exhibit special electrical properties and are suitable for fabricating multifunctional devices. Among them, the 1D nanowire gate configuration has become a promising gate design to tailor 2D FET performances. However, due to possible short circuiting induced by nanowire contact and the high requirement for precision manipulation, the integration of multi-nanowires as gates in a single 2D electronic system remains a grand challenge. Herein, local laser--thinned multiple core-shell SiC@SiO2 nanowires are successfully integrated into MoS2 transistors as multi-gates for active control of extendable logic applications. Nanowire gates (NGs) locally enhance the carrier transportation, and the use of multiple NGs can achieve designed band structures to tune the performance of the device. For core-shell structures, a semiconducting core is used to introduce a gate bias, and the insulating shell provides protection against short circuiting between NGs, facilitating nanowire assembly. Furthermore, a global control gate is introduced to co-tune the overall electrical characteristics, while active control of logic devices and extendable inputs are achieved based on this model. This work proposes a novel nanowire multi-gate configuration, which provides possibilities for localized, precise control of band structures and the fabrication of highly integrated, multifunctional, and controllable nano-devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.