Abstract

All parameters in linear simultaneous equations models can be identified (up to permutation and sign) if the underlying structural shocks are independent and at most one of them is Gaussian. Unfortunately, existing inference methods that exploit such identifying assumptions suffer from size distortions when the true distributions of the shocks are close to Gaussian. To address this weak non-Gaussian problem we develop a locally robust semi-parametric inference method which is simple to implement, improves coverage and retains good power properties. The finite sample properties of the methodology are illustrated in a large simulation study and an empirical study for the returns to schooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.