Abstract

Marine stratocumulus clouds are the "global reflectors," sharply contrasting with the underlying dark ocean surface and exerting a net cooling on Earth's climate. The magnitude of this cooling remains uncertain in part owing to the averaged representation of microphysical processes, such as the droplet-to-drizzle transition in global climate models (GCMs). Current GCMs parameterize cloud droplet size distributions as broad, cloud-averaged gammas. Using digital holographic measurements of discrete stratocumulus cloud volumes, we found cloud droplet size distributions to be narrower at the centimeter scale, never resembling the cloud average. These local distributions tended to form pockets of similar-looking cloud regions, each characterized by a size distribution shape that is diluted to varying degrees. These observations open the way for new modeling representations of microphysical processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call