Abstract

Quantitative dynamic MRI acquisitions have the potential to diagnose diffuse diseases in conjunction with functional abnormalities. However, their resolutions are limited due to the long acquisition time. Such datasets are multi-dimensional, exhibiting interactions between ≥ 4 dimensions, which cannot be easily identified using sparsity or low-rank matrix methods. Hence, low-rank tensors are a natural fit to model such data. But in the presence of multitude of different tissue types in the field-of-view, it is difficult to find an appropriate value of tensor rank, which avoids under- or over-regularization. In this work, we propose a locally low-rank tensor regularization approach to enable high-resolution quantitative dynamic MRI. We show this approach successfully enables dynamic T 1 mapping at high spatio-temporal resolutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.