Abstract

Anti-tumor necrosis factor (TNF)-α therapeutics has the potential to alleviate allergic inflammation. However, in previous studies, the systemic administration of anti-TNF-α agents was frequently accompanied by many adverse effects, such as infection, immunogenicity and malignancy. Efforts are made in the present study to evaluate whether or not local administration of TNF-α antisense oligonucleotide would inhibit allergic airway inflammation and influence systemic immune responses in an ovalbumin-induced asthmatic murine model. The treatment effects of TNF-α antisense oligonucleotide on mice, as well as the alternative proportion of regulatory T cells and T(H) 2 cells, were examined and compared with untreated mice. Local administration of TNF-α antisense oligonucleotide resulted in significantly inhibited TNF-α expression, remarkably decreased inflammatory cell infiltration and dramatically reduced mucus hypersecretion. These treatment effects were associated with induced CD4(+) CD25(+) Foxp3(+) regulatory T cells, reduced T(H) 2 cells and generally decreased T(H) 2-type cytokines expression in bronchoalveolar lavage fluid. Systemic immunosuppression was not triggered by local antisense oligonucleotide administration because the proportion of CD4(+) CD25(+) Foxp3(+) regulatory T cells in the blood, thymus or spleen was not affected. Attenuated 4-1BBL expression was likely involved in the alternative proportion of T cells. These findings demonstrate that local administration of TNF-α antisense oligonucleotide contributes to anti-inflammatory action via the enhancement of regulatory T cells-mediated immune tolerance, which is not accompanied by systemic immunosuppression associated with systemically-induced regulatory T cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.