Abstract
Low‐temperature cofired ceramic (LTCC) is a multilayer 3D packaging, interconnection, and integration technology. For LTCC modules targeting radio and microwave frequency (RF and MW) applications, a low or near 0 ppm/°C temperature coefficient of resonant frequency (τf) ensures temperature stability of embedded resonator and filter functions. The base dielectrics of most commercial LTCC systems have a τf in the range −50 to −80 ppm/°C. This study explored a method to achieve a zero τf on stripline (SL) resonators by locally cofiring, in a multilayer LTCC structure, compensating dielectrics (CD) with an opposite τf to that of the host dielectric. The formulation, synthesis, dielectric properties, and microstructure of SrTiO3 (STO)‐based low‐fire τf CD are presented. Chemical interactions and physical compatibility between the compensating and the host LTCC dielectrics are investigated for cofireability. The dependence of τf compensation on the wt% of STO, the printed thickness, and the location of the CD in multilayer LTCC are discussed. The most effective τf compensation is achieved by integrating CD next to the resonator lines, and can be explained by the concentration of electromagnetic energy via total internal reflection of electromagnetic waves inside the CD layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.