Abstract

Sensor elements based on localized surface plasmon resonance phenomenon in arrays of Au nanostructures on glass substrates (nanochips) with molecularly imprinted acrylamide copolymer coating have been proposed for explosives analogues sensing in liquid and vapor phase. Nanochips exhibited detection limits of 1 pM in aqueous solution and 0.1 ppm in gaseous state against 4-nitrophenol. Vapor phase sensing of 4-nitrotoluene, 1-nitronaphthalene and 5-nitroisoquinoline using the developed 4-nitrophenol-imprinted plasmonic nanochips demonstrated partially selective response with time to signal saturation starting from 2 minutes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.