Abstract

Localized spin-wave modes, which were thermally excited at a specific position in a triangular magnetic element, were investigated using micro-focused Brillouin light scattering in two saturated states, the buckle and Y-states, with an applied magnetic field of 0.24T parallel and perpendicular to the basal edge, respectively. The measured frequency spectrum at a specific beam spot position, rather than an integrated spectrum, was analyzed by comparing it with the simulation data at a precisely selected position within the beam spot area. The analyzed results were used to plot a two-dimensional intensity map and simulation spatial profile to verify the validity of the analysis. From the analysis process, two localized spin-wave modes in a triangular magnetic element were successfully identified near the apex region in the buckle state and near the basal edge region in the Y-state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.