Abstract

Two-dimensional (2-D) spatial profiles of size and density of particulates in RF silane plasmas have been measured simultaneously using a newly developed in situ polarization-sensitive laser light scattering method. Particulates are observed principally in the annular region, around the plasma/sheath boundary near the RF electrode. Their size and density are in ranges of 50/spl sim/110 nm and 10/sup 6//spl sim/10/sup 8/ cm/sup -3/, respectively. Furthermore, larger particulates tend to be localized nearer to the RF electrode and to about 10 mm off the discharge-column-axis. The observed profiles of particulates along the discharge-column-axis can be explained by a balance between electrostatic and ion drag forces exerted on them. Their annular radial profiles may be explained by taking into account that the ion density has the radial distribution, and the electric field around the plasma/sheath boundary has the radial component.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.