Abstract

Energy conservation and interference reduction are the two ultimate goals of topology control in wireless multihop networks. However, the existing energy-conserving algorithms rarely consider interference reduction or at most consider it implicitly. It has been proved that the power-efficient topology does not guarantee low interference. Considering that in any topology, the nodes affected by the communications between any other nodes should be as few as possible, we propose in this article two algorithms, the interference-aware local minimum spanning tree (MST) based algorithm (IALMST) and the interference-bounded energy-conserving algorithm (IBEC). In IALMST, each node builds its local MST independently according to the costs of interference and energy consumption, while in IBEC, each node commonly selects the edge with the least energy consumption, and only when the interference exceeds a predefined bound, it is allowed to select a more expensive edge to reduce interference. Theoretical analysis and simulations illustrate that both algorithms can effectively conserve energy and reduce interference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.