Abstract
The main objective of the paper is the investigation of adiabatic shear band localized fracture phenomenon in inelastic solids during dynamic loading processes. This kind of fracture can occur as a result of an adiabatic shear band localization generally attributed to a plastic instability implied by micro-damage and thermal softening during dynamic plastic flow processes. The theory of thermoviscoplasticity is developed within a framework of the rate type covariance material structure with a finite set of internal state variables. The theory takes into consideration the effects of micro-damage mechanism and thermomechanical coupling. The micro-damage mechanism has been treated as a sequence of nucleation, growth, and coalesence of microcracks. The micro-damage kinetics interacts with thermal and load changes to make failure of solids a highly rate, temperature, and history dependent, nonlinear process. The dynamic failure criterion within localized shear band region is proposed. The relaxation time is used as a regularization parameter. By assuming that the relaxation time tends to zero, the rate independent micro-damage mechanism is considered. Rate dependency (viscosity) allows the spatial differential operator in the governing equations to retain its ellipticity, and the initial-value problem is well posed. The viscoplastic regularization procedure assures the stable integration algorithm by using the finite element method. Particular attention is focused on the well-posedness of the evolution problem (the initial-boundary value problem), as well as on its numerical solutions. Convergence, consistency, and stability of the discretised problem are discussed. The Lax equivalence theorem is formulated and conditions under which this theorem is valid are examined. Utilizing the finite element method and ABAQUS system for regularized elastoviscoplastic model, the numerical investigation of the three-dimensional dynamic adiabatic deformation in a particular body at nominal strain rates ranging from 10-1-104 s-1 is presented. Three particular examples have been considered; namely, a dynamic adiabatic process for a thin-walled steel tube and dynamic adiabatic and quasi-static processes for a thin steel plate. In each case, a thin shear band region of finite width which undergoes significant deformations and temperature rise has been determined. Its evolution until occurrence of final fracture has been simulated. Numerical results are compared with available experimental observation data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have