Abstract
Graphene oxide (GO) has emerged as a carbon-based nanomaterial providing a different pathway to graphene. One of its most notable features is the ability to partially reduce it, resulting in graphene-like sheets through the elimination of oxygen-including functional groups. In this paper, the effect of localized interactions in an Ag/GO/Au multilayer system was studied to explore its potential for photonic applications. GO was dip-coated onto magnetron-sputtered silver, followed by the deposition of a thin gold film to form an Ag/GO/Au structure. Micro-Raman Spectroscopy, SEM and Variable Angle Ellipsometry (VASE) measurements were performed on the Ag/GO/Au structure. An interesting behavior of the GO deposited on magnetron-sputtered silver with the formation of Ag nanostructures on top of the GO layer is reported. In addition to typical GO bands, Micro-Raman analysis reveals peaks such as the 1478 cm−1 band, indicating a transition from sp3 to sp2 hybridization, confirming the partial reduction of GO. Additionally, calculations based on effective medium theory (EMT) highlight the potential of Ag/GO structures in hyperbolic metamaterials for photonics. The medium exhibits dielectric behavior up to 323 nm, transitions to type I HMM between 323 and 400 nm and undergoes an Epsilon Near Zero and Pole (ENZP) transition at 400 nm, followed by type II HMM behavior.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have