Abstract
The objective of this study was to assess the in vitro release kinetics and the in vivo angiogenic effect of human vascular endothelial growth factor (VEGF)-activated poly(DL-lactide-co-glycolide) (PLGA) sponge. The highly porous sponges (each 3 x 4 x 4 mm(3)) were activated by soaking in a VEGF solution (2.5 or 5.0 microg) and then freeze-drying. In vitro release in PBS was investigated by a competitive enzyme immunoassay for up to 3 weeks. The burst-type initial release within the first 3 days followed a more controlled one lasting for >2 weeks. The angiogenic potential of the VEGF sponge was evaluated by subcutaneous implantation into the epigastric groin fascia of Wistar rats. Histomorphometry and SEM confirmed the formation of new capillaries infiltrating the sponge pores starting from the first week and the drastic anostomosis at weeks 2 and 3. However, the rats implanted with control sponges or receiving VEGF injection exhibited much lower or no angiogenic response, respectively. TEM revealed the neo-vessels had a single endothelial layer surrounded by the matrix inoculated with the rat circulation. The results indicate that VEGF-activated PLGA sponge can be considered as a tool to establish neovascularized subcutaneous transplantation sites for tissue-engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.