Abstract

Three-dimensional image-selected in vivo spectroscopy (ISIS), combined with proton-decoupled nuclear-Overhauser-enhanced 15N nuclear magnetic resonance (NMR), was used to localize [15N]metabolites, observed by a head coil, to the brain in rats. In spontaneously breathing anesthetized rats given intravenous [15N]ammonium acetate infusion, brain [5-15N]glutamine was observed in the localized spectrum with a v1/2 of 5 Hz in 19-28 min at 4.7 T, while the signal from blood [15N]urea was eliminated by the localization process. In rats given [15N]leucine infusion, the peak representing predominantly (89%) brain [15N]glutamate was observed, with elimination of the signal from muscle [15N]alanine. In vivo peak areas of the brain [15N]metabolites in the localized spectra were proportional to their concentrations. The advantages and limitations of localization by ISIS using a volume coil with a homogeneous B1 field are compared with those of localization by a surface coil for in vivo 15N NMR study of neurotransmitters in the brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call