Abstract
Three-dimensional image-selected in vivo spectroscopy (ISIS), combined with proton-decoupled nuclear-Overhauser-enhanced 15N nuclear magnetic resonance (NMR), was used to localize [15N]metabolites, observed by a head coil, to the brain in rats. In spontaneously breathing anesthetized rats given intravenous [15N]ammonium acetate infusion, brain [5-15N]glutamine was observed in the localized spectrum with a v1/2 of 5 Hz in 19-28 min at 4.7 T, while the signal from blood [15N]urea was eliminated by the localization process. In rats given [15N]leucine infusion, the peak representing predominantly (89%) brain [15N]glutamate was observed, with elimination of the signal from muscle [15N]alanine. In vivo peak areas of the brain [15N]metabolites in the localized spectra were proportional to their concentrations. The advantages and limitations of localization by ISIS using a volume coil with a homogeneous B1 field are compared with those of localization by a surface coil for in vivo 15N NMR study of neurotransmitters in the brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.