Abstract

We study the structural characteristics of complex networks using the representative eigenvectors of the adjacent matrix. The probability distribution function of the components of the representative eigenvectors are proposed to describe the localization on networks where the Euclidean distance is invalid. Several quantities are used to describe the localization properties of the representative states, such as the participation ratio, the structural entropy, and the probability distribution function of the nearest neighbor level spacings for spectra of complex networks. Whole-cell networks in the real world and the Watts-Strogatz small-world and Barabasi-Albert scale-free networks are considered. The networks have nontrivial localization properties due to the nontrivial topological structures. It is found that the ascending-order-ranked series of the occurrence probabilities at the nodes behave generally multifractally. This characteristic can be used as a structural measure of complex networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.