Abstract

We study the effect of incubation period on epidemic spreading in the Barabasi–Albert scale-free network and the Watts–Strogatz small world network by using a Suspectable-Incubated-Infected-Suspectable model. Our analytical investigations show that the epidemic threshold is independent of incubation period in both networks, which is verified by our large-scale simulation results. We also investigate the effect of incubation period on the epidemic dynamics in a supercritical regime. It is found that with the increase of incubation period Ω, a damped oscillation evolution of ρT (the ratio of persons in incubated state) appears and the time needed to reach a saturation value increases. Moreover, the steady value of ρT increases and approaches to an asymptotic constant with the value of Ω increasing. As a result, the infected ratio ρI decreases with the increase of Ω according to a power law.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call