Abstract

We have developed a model-based imaging approach to estimate the site of origin of reentrant arrhythmia from body surface potential maps (BSPMs), with the aid of a cardiac arrhythmia model. The reentry was successfully simulated and maintained in the cardiac model, and the simulated ECG waveforms over the body surface corresponding to a maintained reentry have evident characteristics of ventricular tachycardia. The performance of the inverse imaging approach was evaluated by computer simulations. The present simulation results show that an averaged localization error of about 1.5 mm, when 5% Gaussian white noise was added to the BSPMs, was detected. The effects of the heart–torso geometry uncertainty on the localization were also initially assessed and the simulation results suggest that no significant influence was observed when 10% torso geometry uncertainty or 10 mm heart position shifting was considered. The present simulation study suggests the feasibility of localizing the site of origin of reentrant arrhythmia from non-invasive BSPMs, with the aid of a cardiac arrhythmia model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.