Abstract
If G G and H H are finitely generated, residually nilpotent metabelian groups, H H is termed para- G G if there is a homomorphism of G G into H H which induces an isomorphism between the corresponding terms of their lower central quotient groups. We prove that this is an equivalence relation. It is a much coarser relation than isomorphism, our ultimate concern. It turns out that many of the groups in a given equivalence class share various properties, including finite presentability. There are examples, such as the lamplighter group, where an equivalence class consists of a single isomorphism class and others where this is not the case. We give several examples where we solve the Isomorphism Problem. We prove also that the sequence of torsion-free ranks of the lower central quotients of a finitely generated metabelian group is computable. In a future paper we plan on proving that there is an algorithm to compute the numerator and denominator of the rational Poincaré series of a finitely generated metabelian group and will carry out this computation in a number of examples, which may shed a tiny bit of light on the Isomorphism Problem. Our proofs use localization, class field theory and some constructive commutative algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.