Abstract

This paper is a continuation of our previous work in [12]. The results, and some applications, have been described in the announcement [13]; it may be useful to discuss here, a little more fully, the nature and purpose of this work.We are concerned basically with three kinds of algorithmic problem: (1) isomorphism problems, (2) “orbit problems”, and (3) “effective generation”.(1) Isomorphism problems. Here we have a class of algebraic objects of some kind, and ask: is there a uniform algorithm for deciding whether two arbitrary members of are isomorphic? In most cases, the answer is no: no such algorithm exists. Indeed this has been one of the most notable applications of methods of mathematical logic in algebra (see [26, Chapter IV, §4] for the case where is the class of all finitely presented groups). It turns out, however, that when consists of objects which are in a certain sense “finite-dimensional”, then the isomorphism problem is indeed algorithmically soluble. We gave such algorithms in [12] for the following cases: = {finitely generated nilpotent groups}; = {(not necessarily associative) rings whose additive group is finitely generated}; = {finitely Z-generated modules over a fixed finitely generated ring}.Combining the methods of [12] with his own earlier work, Sarkisian has obtained analogous results with the integers replaced by the rationals: in [20] and [21] he solves the isomorphism problem for radicable torsion-free nilpotent groups of finite rank and for finite-dimensional Q-algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.