Abstract

Green light emitting InGaN/GaN multiple-quantum-well (MQW) structures with varying well thickness are grown via metal-organic chemical vapor deposition (MOCVD). The localization effect in these samples is studied by means of temperature-dependent photoluminescence (PL) measurements. The S-shape shift of PL peak energy with increasing temperature is observed, from which the extent of localization effect is determined quantitatively by using a band-tail model. It is found that the composition-related deep localization states dominate the light emission in thin-well MQWs, while in thick-well MQWs the shallow localization states induced by the fluctuations of InGaN well thickness dominate the luminescence efficiency. It is considered that in the thinner wells the improved emitting efficiency may partially originate from the stronger localization effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.