Abstract

We address a poorly understood aspect of ecological niche modeling: its sensitivity to different levels of geographic uncertainty in organism occurrence data. Our primary interest was to assess how accuracy degrades under increasing uncertainty, with performance measured indirectly through model consistency. We used Monte Carlo simulations and a similarity measure to assess model sensitivity across three variables: locality accuracy, niche modeling method, and species. Randomly generated data sets with known levels of locality uncertainty were compared to an original prediction using Fuzzy Kappa. Data sets where locality uncertainty is low were expected to produce similar distribution maps to the original. In contrast, data sets where locality uncertainty is high were expected to produce less similar maps. BIOCLIM, DOMAIN, Maxent and GARP were used to predict the distributions for 1200 simulated datasets (3 species x 4 buffer sizes x 100 randomized data sets). Thus, our experimental design produced a total of 4800 similarity measures, with each of the simulated distributions compared to the prediction of the original data set and corresponding modeling method. A general linear model (GLM) analysis was performed which enables us to simultaneously measure the effect of buffer size, modeling method, and species, as well as interactions among all variables. Our results show that modeling method has the largest effect on similarity scores and uniquely accounts for 40% of the total variance in the model. The second most important factor was buffer size, but it uniquely accounts for only 3% of the variation in the model. The newer and currently more popular methods, GARP and Maxent, were shown to produce more inconsistent predictions than the earlier and simpler methods, BIOCLIM and DOMAIN. Understanding the performance of different niche modeling methods under varying levels of geographic uncertainty is an important step toward more productive applications of historical biodiversity collections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.