Abstract

We report results of the measurement of local work function, or apparent barrier height, on the Au/Cu(111) surface using scanning tunneling microscopy (STM). By measuring a response of tunneling current to a change of the tunneling gap distance during scanning, we can obtain a work function image simultaneously with a topographic STM image. In this way, we could successfully observe the difference in local work function due to different elements and atomic structures. Our results show that the mean work function value of the Au overlayer is 7±3% larger than that of the Cu(111) substrate and the value of the work function of the second Au layer is the same as that of the first Au layers within the measurement uncertainty. At the step edges, the work function values are lower than that on the terrace. The width and depth of the low work function trough at Au–Au, and Cu–Au single height steps were also obtained. The measured values are consistent with those measured on vicinal surfaces. This work also suggests that the local work function measurement can be used to identify the element on a surface and that the STM is quite useful to get information on how the work function is related with surface structures and how the work function spatially changes on nanometer scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.