Abstract
We prove that the Cauchy problem for the two-dimensional Zakharov system is locally well-posed for initial data which are localized perturbations of a line solitary wave. Furthermore, for this Zakharov system, we prove a weak convergence to a nonlinear Schrödinger equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.