Abstract

During the last decade, the utilization of non-contact deformation measurement systems based on digital image correlation (DIC) has increased in wood related research. By measuring deformations with DIC systems, surface strain fields can be calculated. The first aim of this study concerns the possibility to detect detailed strain fields along the entire length of a wooden board subjected to pure bending and the potential of using such strain fields to determine a bending modulus of elasticity (MOE) profile along a board. Displacements were measured over 12 subareas along a flat surface of the board. For each such area, a separate local coordinate system was defined. After the transformation of locally measured coordinates to a global system, high resolution strain fields and a corresponding bending MOE profile were calculated. A second method in establishing bending MOE profiles is to use fibre angle information obtained from laser scanning and a calculation model based on integration of bending stiffness over board cross sections. Such profiles have recently been utilized for accurate strength grading. A second aim of this study was to investigate the accuracy of the bending MOE profiles determined using the latter method involving fibre angle information. Bending MOE profiles determined using the two described methods agree rather well. However, for some patterns of knot clusters, the local bending MOE, calculated on the basis of fibre angles and integration of bending stiffness, is overestimated. Hence, this research adds knowledge that may be utilized to improve the newly suggested strength grading method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.