Abstract

Here, I present a novel method for normalizing a finite set of numbers, which is studied by the domain of biological vision. Normalizing in this context means searching the maximum and minimum number in a set and then rescaling all numbers such that they fit into a numerical interval. My method computes the minimum and maximum number by two pseudo-diffusion processes in separate diffusion layers. Activity of these layers feed into a third layer for performing the rescaling operation. The dynamic of the network is richer than merely performing a rescaling of its input, and reveals phenomena like contrast detection, contrast enhancement and a transient compression of the numerical range of the input. Apart from presenting computer simulations, some properties of the diffusion operators and the network are analysed mathematically. Furthermore, a method is proposed for to freeze the model’s state when adaptation is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.