Abstract
Consider a class of null-recurrent randomly biased walks on a supercritical Galton–Watson tree. We obtain the scaling limits of the local times and the quenched local probability for the biased walk in the subdiffusive case. These results are a consequence of a sharp estimate on the return time, whose analysis is driven by a family of concave recursive equations on trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.