Abstract
AbstractIn this paper we prove a quenched functional central limit theorem for a biased random walk on a supercritical Galton–Watson tree with leaves. This extends a result of Peres and Zeitouni (2008) where the case without leaves was considered. A conjecture of Ben Arous and Fribergh (2016) suggests an upper bound on the bias which we observe to be sharp.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.