Abstract

Three-dimensional fields (latitude — altitude — local time) of temperature and aerosol in the upper clouds, obtained from the Venera-15 IR spectrometry data, were studied to search for the solar-related structures. The temperature variation at the isobaric levels vs. solar longitude was presented as a superposition of the cosines with periods of 1, 1 2 , 1 3 and 1 4 Venusian days. At low latitudes the diurnal tidal component reaches a maximum above 0.2 mb (92km) level. At high latitudes it dominates at P> 50 mb (68 km) in the cold collar, being roughly twice as much as the semidiurnal one and passing through the maximum of 13 K at 400 mb (57 km). The semidiurnal tidal amplitude exceeds the diurnal one below 90 km (where its maximum locates near 83 km), and also in the upper clouds, above 58 km. At low latitudes the 1 3 days component predominates at 10 – 50 mb (68–76 km). In the upper clouds, where most of the solar energy, absorbed in the middle atmosphere, deposits, all four tidal components, including wavenumbers 3 and 4, have significant amplitudes. A position of the upper boundary of the clouds depends on local time in such a way that the lowest height of the clouds is observed in the morning at all selected latitude ranges. At low latitudes the highest position of the upper boundary of the clouds (at 1218 cm −1) is found at 8 – 9 PM, whereas the lowest one is near the morning terminator. At high latitudes the lowest position of the upper boundary of the clouds shifts towards the dayside being at 10:30 AM at 75° in the cold collar and the highest one shifts to 4 PM. The zonal mean altitude of the upper boundary of the clouds decreases from 69 km at 15° to 59 km at 75°. The diurnal tidal component has the highest amplitude in the cold collar (1.5 km). At low latitudes both amplitudes, diurnal and semidiurnal, reach the values 0.8 – 1 km.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.