Abstract
Impact flashes on the moon are caused by high-speed collisions of celestial bodies with the lunar surface. The study of the impacts is critical for exploring the evolutionary history and formation of the Moon, and for quantifying the risk posed by the impacts to future human activity. Although the impacts have been monitored from the Earth by a few projects in past 20 years, the events occurring on the lunar far side have not been explored systematically so far. We here present an end-to-end image simulator dedicated to detecting and monitoring the impacts from space, which is useful for future mission design. The simulator is designed for modularity and developed in the Python environment, which is mainly composed of four components: the flash temporal radiation, the background emission, the telescope and the detector used to collect and measure the radiation. Briefly speaking, with a set of input parameters, the simulator calculates the flash radiation in the context of the spherical droplet model and the background emission from the lunar surface. The resulting images are then generated by the simulator after considering a series observational effects, including the stray light, transmission of the instrument, point spread function and multiple kinds of noise caused by a CCD/CMOS detector. The simulator is validated by comparing the calculation with the observations taken on the ground. The modular design enables the simulator to be improved and enhanced by including more complex physical models in the future, and to be flexible for other future space missions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.