Abstract

The Golomb ruler problem is a very hard combinatorial optimization problem that has been tackled with many different approaches, such as constraint programming (CP), local search (LS), and evolutionary algorithms (EAs), among other techniques. This paper describes several local search-based hybrid algorithms to find optimal or near-optimal Golomb rulers. These algorithms are based on both stochastic methods and systematic techniques. More specifically, the algorithms combine ideas from greedy randomized adaptive search procedures (GRASP), scatter search (SS), tabu search (TS), clustering techniques, and constraint programming (CP). Each new algorithm is, in essence, born from the conclusions extracted after the observation of the previous one. With these algorithms we are capable of solving large rulers with a reasonable efficiency. In particular, we can now find optimal Golomb rulers for up to 16 marks. In addition, the paper also provides an empirical study of the fitness landscape of the problem with the aim of shedding some light about the question of what makes the Golomb ruler problem hard for certain classes of algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.