Abstract
Finding Golomb rulers is an extremely challenging optimization problem with many practical applications. This problem has been approached by a variety of search methods in recent years. We consider in this work a hybrid evolutionary algorithm that incorporates ideas from greedy randomized adaptive search procedures (GRASP), tabu-based local search methods (TS) and scatter search (SS). In particular, GRASP and TS are embedded into a SS algorithm to serve as initialization and restarting methods for the population and as improvement technique respectively. The resulting memetic algorithm significantly outperforms earlier approaches (including other hybrid EAs, as well as hybridizations of local search and constraint programming), finding optimal rulers where the mentioned techniques failed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.