Abstract
In this article, a kind of meshless local radial point interpolation (MLRPI) method is proposed to two‐dimensional fractional‐time convection‐diffusion‐reaction equations and satisfactory agreements are archived. This method is based on meshless methods and benefits from collocation ideas but it does not belong to the traditional global meshless collocation methods. In MLRPI method, it does not need any kind of integration locally or globally over small quadrature domains which is essential in the finite element method and those meshless methods based on Galerkin weak form. Also, it is not needed to determine shape parameter which plays important role in collocation method based on the radial basis functions (Kansa's method). Therefore, computational costs of this kind of MLRPI method is less expensive. The stability and convergence of this meshless approach are discussed and theoretically proven. It is proved that the present meshless formulation is very effective for modeling and simulation of fractional differential equations. Furthermore, the numerical studies on sensitivity analysis and convergence analysis show the stability and reliable rates of convergence. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 974–994, 2017
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.