Abstract

In this article, a general type of two-dimensional time-fractional telegraph equation explained by the Caputo derivative sense for (1 < α ≤ 2) is considered and analyzed by a method based on the Galerkin weak form and local radial point interpolant (LRPI) approximation subject to given appropriate initial and Dirichlet boundary conditions. In the proposed method, so-called meshless local radial point interpolation (MLRPI) method, a meshless Galerkin weak form is applied to the interior nodes while the meshless collocation method is used for the nodes on the boundary, so the Dirichlet boundary condition is imposed directly. The point interpolation method is proposed to construct shape functions using the radial basis functions. In the MLRPI method, it does not require any background integration cells so that all integrations are carried out locally over small quadrature domains of regular shapes, such as circles or squares. Two numerical examples are presented and satisfactory agreements are achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.